Recognizing the pretentiousness ways to get this books biofilm eradication and prevention a pharmaceutical approach to medical device infections is additionally useful. You have remained in right site to begin getting this info. get the biofilm eradication and prevention a pharmaceutical approach to medical device infections belong to that we pay for here and check out the link.

You could purchase guide biofilm eradication and prevention a pharmaceutical approach to medical device infections or acquire it as soon as feasible. You could quickly download this biofilm eradication and prevention a pharmaceutical approach to medical device infections after getting deal. So, later you require the books swiftly, you can straight get it. Its appropriately certainly simple and suitably fats, isnt it? You have to favor to in this ventilate
approaches pharmaceutical researchers need to take to limit this problem. Split into three parts, the first deals with the development and characterization of biofilm on the surfaces of implanted or inserted medical devices. Questions as to why biofilms form over medical device surfaces and what triggers biofilm formation are addressed. In the second section, the author discusses biofilm-mediated chronic infections occurred in various organs (eyes, mouth, wounds) and pharmaceutical and drug delivery knowledge gained from research in these area. The third part explores pharmaceutical approaches like lipid-and polymer-based drug delivery carriers for eradicating biofilm on device-related infections. In addition, this section also explores the topic of novel small molecule (like iron and its complexes/metal chelators) and a quorum-sensing inhibitors to control medical biofilm formation.

Biofilm Infections-Thomas Bjarnsholt 2014-10-11 This book will cover both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as diagnostics and treatment regimes. A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that that less than 0.1% of the total microbial biomass lives in the planktonic mode of growth. The term was coined in 1978 by Costerton et al. who defined the term biofilm for the first time.In 1993 the American Society for Microbiology (ASM) recognised that the biofilmmode of growth was relevant to microbiology. Lately many articles have been published on the clinical implications of bacterial biofilms. Both original articles and reviews concerning the biofilm problem are available.

Bacterial Biofilms-Tony Romeo 2008-02-26 Throughout the biological world, bacteria thrive predominantly in surface-attached, matrix-enclosed, multicellular communities or biofilms, as opposed to isolated planktonic cells. This choice of lifestyle is not trivial, as it involves
major shifts in the use of genetic information and cellular energy, and has profound consequences for bacterial physiology and survival. Growth within a biofilm can thwart immune function and antibiotic therapy and thereby complicate the treatment of infectious diseases, especially chronic and foreign device-associated infections. Modern studies of many important biofilms have advanced well beyond the descriptive stage, and have begun to provide molecular details of the structural, biochemical, and genetic processes that drive biofilm formation and its dispersion. There is much diversity in the details of biofilm development among various species, but there are also commonalities. In most species, environmental and nutritional conditions greatly influence biofilm development. Similar kinds of adhesive molecules often promote biofilm formation in diverse species. Signaling and regulatory processes that drive biofilm development are often conserved, especially among related bacteria. Knowledge of such processes holds great promise for efforts to control biofilm growth and combat biofilm-associated infections. This volume focuses on the biology of biofilms that affect human disease, although it is by no means comprehensive. It opens with chapters that provide the reader with current perspectives on biofilm development, physiology, environmental, and regulatory effects, the role of quorum sensing, and resistance/phenotypic persistence to antimicrobial agents during biofilm growth.

Biofilms in Infection Prevention and Control - Steven L. Percival 2014-01-30 Biofilms in Infection and Disease Control: A Healthcare Handbook outlines the scientific evidence and rationale for the prevention of infection, the role biofilms play in infection control, and the issues concerning their resistance to antimicrobials. This book provides practical guidance for healthcare and infection control professionals, as well as students, for preventing and controlling infection. Biofilms are the most common mode of bacterial growth in nature. Highly resistant to antibiotics and antimicrobials, biofilms are the
source of more than 65 percent of health care associated infections (HCAI), which, according to the WHO, affect 1.4 million people annually. Biofilms are involved in 80 percent of all microbial infections in the body, including those associated with medical devices such as catheters, endotracheal tubes, joint prostheses, and heart valves. Biofilms are also the principle causes of infections of the middle-ear, dental caries, gingivitis, prostatitis and cystic fibrosis. Importantly, biofilms also significantly delay wound healing and reduce antimicrobial efficiency in at-risk or infected skin wounds. Provides specific procedures for controlling and preventing infection Includes case studies of HCAI, and identifies appropriate treatments Presents national government standards for infection prevention and control Includes extensive references and links to websites for further information

Antibiotics To Effectively Eradicate Pre-Formed Biofilms In Vitro-Cate Winstanley 2017 INTRODUCTION: Over 65% of bacterial infections treated clinically in the developed world are now known to be caused by organisms growing in biofilms. Biofilms are matrix-enclosed communities of bacteria which are significantly more resistant to host defences and to conventional therapies compared to their planktonic counterparts. Device-related infections (such as periprosthetic infections) can be unresponsive to orally administered antibiotics that have virtually eliminated acute infections caused by planktonic bacteria. In addition, bioufb01lm-related periprosthetic infections lack a deufb01nitive diagnosis because matrix-enclosed sessile bacteria are less immunogenic and elicit a reduced inflammatory response compared to planktonic cells. Implantable devices are highly susceptible to infection and biofilm formation. Once a biofilm has been established in a periprosthetic joint it is difficult to diagnose and eradicate. Successful treatment of periprosthetic joint infection
requires the optimal surgical procedure combined with long-term antimicrobial therapy directed against surface-adhering microorganisms. Given the limited efficacy of traditional antibiotics in implant-associated infections, novel strategies such as releasing antibiotics directly to the site of infection are a promising future option for biofilm prevention and eradication. The objective of the study was to assess the ability of Stimulan® beads containing a mixture of Vancomycin and Gentamicin or Vancomycin and Tobramycin to release a combination of antibiotics and effectively eradicate pre-formed biofilms in vitro.

METHODS: Single species Pseudomonas aeruginosa and Staphylococcus aureus biofilms were established on polycarbonate coupons within a CDC biofilm reactor (Figure 1). Biofilms were established in a batch model for 72 hours prior to processing. Following incubation, established biofilms were removed from the reactor and rinsed in phosphate buffered saline to remove planktonic organisms. Washed biofilms were exposed to a challenge plate containing suspended Stimulan® beads containing a mixture of Vancomycin and Gentamicin or Vancomycin and Tobramycin. Positive and negative controls were tested concurrently. All testing was performed in triplicate. The challenge plate was incubated for 24 hours at 37°C ± 2°C. Following exposure, remaining attached organisms were recovered by sonication. Serial dilutions and plate counts were performed on the resultant suspensions. Log reductions compared to the negative control were reported. Students T-Tests were performed on the raw data to determine the significant effect of the test items. RESULTS SECTION: An average of 6.78 ± 0.23 Log10CFU/mL were recovered from triplicate negative control seventy-two-hour Pseudomonas aeruginosa biofilms. An average of 6.60 ± 0.23 Log10CFU/mL were recovered from negative control seventy-two-hour Staphylococcus aureus biofilms. No viable organisms were recovered from biofilms exposed to the positive control. No viable P. aeruginosa and S. aureus were recovered from biofilms exposed to
Stimulan® beads containing a mixture of Vancomycin and Gentamicin or Vancomycin and Tobramycin within detection limits (Figure 2). This equated to an average log reduction in P. aeruginosa of >5.78 Log10CFU/mL-1 and an average log reduction in S. aureus of >5.60 Log10CFU/mL-1.

Microbial Biofilms - Dharumadurai Dhanasekaran 2016-07-13 In the book Microbial Biofilms: Importance and applications, eminent scientists provide an up-to-date review of the present and future trends on biofilm-related research. This book is divided with four subdivisions as biofilm fundamentals, applications, health aspects, and their control. Moreover, this book also provides a comprehensive account on microbial interactions in biofilms, pyocyanin, and extracellular DNA in facilitating Pseudomonas aeruginosa biofilm formation, atomic force microscopic studies of biofilms, and biofilms in beverage industry. The book comprises a total of 21 chapters from valued contributions from world leading experts in Australia, Bulgaria, Canada, China, Serbia, Germany, Italy, Japan, the United Kingdom, the Kingdom of Saudi Arabia, Republic of Korea, Mexico, Poland, Portugal, and Turkey. This book may be used as a text or reference for everyone interested in biofilms and their applications. It is also highly recommended for environmental microbiologists, soil scientists, medical microbiologists, bioremediation experts, and microbiologists working in biocorrosion, biofouling, biodegradation, water microbiology, quorum sensing, and many other related areas. Scientists in academia, research laboratories, and industry will also find it of interest.

The Chemistry of Biofilms and Their Inhibitors - Sergio F. Sousa 2020-12-11

2186 - *Assessment of the Ability of Stimulan® Beads to Release a Combination of Antibiotics to Effectively*
Eradicate Pre-Formed Biofilms In Vitro

Cate Winstanley 2017

INTRODUCTION: Over 65% of bacterial infections treated clinically in the developed world are now known to be caused by organisms growing in biofilms. Biofilms are matrix-enclosed communities of bacteria which are significantly more resistant to host defences and to conventional therapies compared to their planktonic counterparts. Device-related infections (such as periprosthetic infections) can be unresponsive to orally administered antibiotics that have virtually eliminated acute infections caused by planktonic bacteria. In addition, bioufb01lm-related periprosthetic infections lack a deufb01nite diagnosis because matrix-enclosed sessile bacteria are less immunogenic and elicit a reduced inflammatory response compared to planktonic cells. Implantable devices are highly susceptible to infection and biofilm formation. Once a biofilm has been established in a periprosthetic joint it is difficult to diagnose and eradicate. Successful treatment of periprosthetic joint infection requires the optimal surgical procedure combined with long-term antimicrobial therapy directed against surface-adhering microorganisms. Given the limited efficacy of traditional antibiotics in implant-associated infections, novel strategies such as releasing antibiotics directly to the site of infection are a promising future option for biofilm prevention and eradication. The objective of the study was to assess the ability of Stimulanu00ae beads containing a mixture of Vancomycin and Gentamicin or Vancomycin and Tobramycin to release a combination of antibiotics and effectively eradicate pre-formed biofilms in vitro.

METHODS: Single species Pseudomonas aeruginosa and Staphylococcus aureus biofilms were established on polycarbonate coupons within a CDC biofilm reactor (Figure 1). Biofilms were established in a batch model for 72 hours prior to processing. Following incubation, established biofilms were removed from the reactor and rinsed in phosphate buffered saline to remove planktonic organisms. Washed biofilms were exposed to a challenge plate containing suspended Stimulanu00ae beads containing a
mixture of Vancomycin and Gentamicin or Vancomycin and Tobramycin. Positive and negative controls were tested concurrently. All testing was performed in triplicate. The challenge plate was incubated for 24 hours at 37°C ± 2°C. Following exposure, remaining attached organisms were recovered by sonication. Serial dilutions and plate counts were performed on the resultant suspensions. Log reductions compared to the negative control were reported. Students T-Tests were performed on the raw data to determine the significant effect of the test items. RESULTS SECTION: An average of 6.78 ± 0.23 Log10CFU/mL-1 were recovered from triplicate negative control seventy-two-hour Pseudomonas aeruginosa biofilms. An average of 6.60 ± 0.23 Log10CFU/mL-1 were recovered from negative control seventy-two-hour Staphylococcus aureus biofilms. No viable organisms were recovered from biofilms exposed to the positive control. No viable P. aeruginosa and S. aureus were recovered from biofilms exposed to Stimulan® beads containing a mixture of Vancomycin and Gentamicin or Vancomycin and Tobramycin within detection limits (Figure 2). This equated to an average log reduction in P. aeruginosa of >5.78 Log10CFU/mL-1 and an average log reduction in S. aureus of >5.60 Log10CFU/mL-1 (p

Biofilm-based Healthcare-associated Infections - Gianfranco Donelli 2014-11-10 The aim of this book is to provide readers with a wide overview of the main healthcare-associated infections caused by bacteria and fungi able to grow as biofilm. The recently acquired knowledge on the pivotal role played by biofilm-growing microorganisms in healthcare-related infections has given a new dynamic to detection, prevention and treatment of these infections in patients admitted to both acute care hospitals and long-term care facilities. Clinicians, hygienists and microbiologists will be updated by leading scientists on the state-of-art of biofilm-based infections and on the most innovative strategies for prevention and treatment of these...
infections, often caused by emerging multidrug-resistant biofilm-growing microorganisms.

Bacterial Biofilms-Sadik Dincer 2020-10-07
This book examines biofilms in nature. Organized into four parts, this book addresses biofilms in wastewater treatment, inhibition of biofilm formation, biofilms and infection, and ecology of biofilms. It is designed for clinicians, researchers, and industry professionals in the fields of microbiology, biotechnology, ecology, and medicine as well as graduate and postgraduate students.

Microbial Biofilms-Hilary M. Lappin-Scott 2003-09-18
Biochemistry and ecology of biofilms from industrial, medical and other viewpoints.

Recent Trends in Biofilm Science and Technology-Manuel Simoes 2020-07-03
Recent Trends in Biofilm Science and Technology helps researchers working on fundamental aspects of biofilm formation and control conduct biofilm studies and interpret results. The book provides a remarkable amount of knowledge on the processes that regulate biofilm formation, the methods used, monitoring characterization and mathematical modeling, the problems/advantages caused by their presence in the food industry, environment and medical fields, and the current and emergent strategies for their control. Research on biofilms has progressed rapidly in the last decade due to the fact that biofilms have required the development of new analytical tools and new collaborations between biologists, engineers and mathematicians. Presents an overview of the process of biofilm formation and its implications Provides a clearer understanding of the role of biofilms in infections Creates a foundation for further research on novel control strategies Updates readers on the remarkable amount of knowledge on the processes that regulate biofilm formation
Racing for the Surface-Bingyun Li 2020-03-02
This book covers the latest research in biofilm, infection, and antimicrobial strategies in reducing and treating musculoskeletal, skin, transfusion, implant-related infections, etc. Topics covered include biofilms, small colony variants, antimicrobial biomaterials (antibiotics, antimicrobial peptides, hydrogels, bioinspired interfaces, immunotherapeutic approaches, and more), antimicrobial coatings, engineering and 3D printing, antimicrobial delivery vehicles, and perspectives on clinical impacts. Antibiotic resistance, which shifts the race toward bacteria, and strategies to reduce antibiotic resistance, are also briefly touched on. Combined with its companion volume, Racing for the Surface: Pathogenesis of Implant Infection and Advanced Antimicrobial Strategies, this book bridges the gaps between infection and tissue engineering, and is an ideal book for academic researchers, clinicians, industrial engineers and scientists, governmental representatives in national laboratories, and advanced undergraduate students and post-doctoral fellows who are interested in infection, microbiology, and biomaterials and devices.

Science and Technology Against Microbial Pathogens-A Mendez-Vilas 2011-07-06
The aim of this book is to disseminate the most recent research in science and technology against microbial pathogens presented at the first edition of the ICAR Conference Series (ICAR2010) held in Valladolid, Spain, in November 2010. This volume is a compilation of 86 chapters written by active researchers that offer information and experiences and afford critical insights into antimicrobe strategies in a general context marked by the threat posed by the increasing antimicrobial resistance of pathogenic microorganisms. “Anti” is here taken in a wide sense as “against cell cycle, adhesion, or communication”, and when harmful for the human health (infectious diseases, chemotherapy etc.) and industry or economy (food, agriculture, water systems etc.) The book examines this
interesting subject area from antimicrobial resistance (superbugs, emerging and re-emerging pathogens etc.), to the use of natural products or microbes against microbial pathogens, not forgetting antimicrobial chemistry, physics and material science. Readers will find in a single volume, up-to-date information of the current knowledge in antimicrobial research. The book is recommended for researchers from a broad range of academic disciplines that are contributing in the battle against harmful microorganisms, not only those more traditionally involved in this research area (microbiologists, biochemists, geneticists, clinicians etc.), but also experimental and theoretical/computational chemists, physicists or engineers. Contents:Antimicrobial Peptides:A new class of Scots pine antimicrobial proteins, which act by binding β-glucan (Sanjeeewani Sooriyaarachchi, Adrian Suárez Covarrubias, Wimal Udbhayasekera, Frederick O Asiegbu and Sherry L Mowbray)Antimicrobial aza-β3-peptides: Structure-activity relationship? (B Legrand, M Laurencin, C Zatylny-Gaudin, J Henry, A Bondon and M Baudy Floc'h)Differential antimicrobial activities of Human Beta-Defensins against Methicillin Resistant (MRSA) and Methicillin sensitive (MSSA) Staphylococcus aureus (N D S Herathge, J T George and D A Rowley)Non-antibiotics Biocides:Evaluation of biocidal activity of Evolyse, a disinfectant based on hydrogen peroxide and silver nitrate (M Barbara Pisano, V Altana, M Elisabetta Fadda, L Mura, M Deplano and S Cosentino)Increased resistance to detergent in Enterococcus faecalis (Jacqueline Keyhani and Ezzatollah Keyhani)Legionella pneumophila isolation rate in a Spanish hospital pre- and post-installation of an electrochemical activation system for potable water disinfection (Jose-Maria Rivera, Juan-Jose Granizo, Jose-Maria Aguiar, Ana Vos-Arenilla, Maria-Jose Giménez and Lorenzo Aguilar)Antimicrobial Evaluation: Clinical and Pre-clinical Trials:Adherence to ART and its associated factors among HIV Aids Patients in Addis Ababa (Ezra Muluneh)Effectiveness and safety of miconazole with hydrocortisone
(Daktacort) feminine care cream in the treatment of vulvar candidiasis (J Perez-Peralta and G Balaccua)

Natural Products: Terrestrial and Marine Organisms: Analysis of the 2-Phenylethyl isothiocyanate present in Brassica leaves and their potential application as antimicrobial agent against bacteria strains isolated from Human and Pig gastrointestinal tracts (A Aires, C Dias, R N Bennett, E A S Rosa and M J Saavedra)

Antimicrobial effect of carvacrol on Escherichia coli K12 growth at different temperatures (C M Belda-Galbis, A Martínez and D Rodrigo)

Bacteriostatic effect of cocoa powder rich in polyphenols to control Cronobacter sakazakii proliferation on infant milk formula (M C Pina-Pérez, D Rodrigo and A Martínez-López)

Bacteriophages actions on Salmonella Enteritidis biofilm (A A Ferreira, R C S Mendonça, H M Hungaro, M M Carvalho and J A M Pereira)

Biocompatibility and antibacterial property of cold sprayed ZnO/Titanium composite coating (Noppakun Sanpo, Chen Hailan, Kelvin Loke, Koh Pak Keng, Philip Cheang, C C Berndt and K A Khor)

Development of a liquid-medium assay for screening antimicrobial natural products against marine bacteria (M Geiger, J Dupont, O Grovel, Y F Pouchus and P Hess)

Experimental planning can help to optimize the selective photoinactivation of microorganisms (J R Perussi, P L Fernandes, C Bernal and H Imasato)

Resistance and Susceptibility: A 3-year review on the profile of multidrug-resistant Gram-negative in a tertiary teaching hospital in Malaysia (H Habsah, Z Z Deris, M Zeehaida, A R Zaidah, H Siti Asma' and I Nabilah)

Antimicrobial susceptibility in clinical isolates of Staphylococcus aureus harbouring of mecA and lukFS-PV genes in Northern Portugal (N Silva, C Prudêncio, C Tomaz and R Fernandes)

Antimicrobial susceptibility profile

Raffael Schaffrath)Comparison of anti-listerial effect spectrum of bacteriocins (Selin Kalkan, Emel Ünal and Zerrin Erginkaya)and other papers Readership: Professionals - microbiologists, biochemists, geneticists, clinicians, chemists, physicists, engineers. Keywords:Antimicrobial Research;Antimicrobial Resistance;Antimicrobial in Natural Products;Antimicrobial Microbes;Antimicrobial Materials Science and Surface Chemistry;Microbial Pathogens;Antibacterial;Antifungal;ICAR2010 Conference Proceedings Book;Mendez-VilasKey Features:The book examines this interesting subject area from antimicrobial resistance (superbugs, emerging and re-emerging pathogens etc.), to the use of natural products or microbes against microbial pathogens, not forgetting the antimicrobial chemistry, physics and material scienceReaders will be able to find updated information of the current knowledge in antimicrobial research.
New Insights on Biofilm Antimicrobial Strategies - Luís Melo 2021-08-17 Over the last few decades, the study of microbial biofilms has been gaining interest among the scientific community. These microbial communities comprise cells adhered to surfaces that are surrounded by a self-produced exopolymeric matrix that protects biofilm cells against different external stresses. Biofilms can have a negative impact on different sectors within society, namely in agriculture, food industries, and veterinary and human health. As a consequence of their metabolic state and matrix protection, biofilm cells are very difficult to tackle with antibiotics or chemical disinfectants. Due to this problem, recent advances in the development of antibiotic alternatives or complementary strategies to prevent or control biofilms have been reported. This book includes different strategies to prevent biofilm formation or to control biofilm development and includes full research articles, reviews, a communication, and a perspective.

Medical Biofilms - Jana Jass 2003-04-02 Biofilms are formed by microorganisms growing on surfaces and comprise a series of microcolonies interspersed with spaces through which fluids and other microorganisms move. In medicine, the primary problems are biofilms associated with implants: infections are increasingly difficult to treat with traditional antibiotics and removal of the implant often becomes essential, frequently leading to higher morbidity and mortality. This will be the first book dedicated to medical biofilms. It will cover much recent information on the problems of biofilms, how to detect them and how to control their presence.

XXXIII SIMGBM Congress 2019 - Antimicrobials And Host-Pathogen Interactions - Paolo Visca 2021-05-20

Biofilms - Science and Technology - L. Melo 2012-12-06 Biofilms -- Science and Technology
covers the main topics of biofilm formation and activity, from basic science to applied aspects in engineering and medicine. The book presents a masterly discussion of microbial adhesion, the metabolism of microorganisms in biofilms, modelling of mass transfer and biological reaction within biofilms, as well as the behaviour of these microbial communities in industry (waste water treatment, heat exchanger biofouling, membranes, food processing) and in medicine (teeth, implants, prosthetic devices). Laboratory techniques and industrial monitoring methods are also presented. The book is directed at readers at the postgraduate level and is organised as a textbook, containing 11 chapters, a glossary, and a detailed subject index.

Essential Oils and Nanotechnology for Treatment of Microbial Diseases - Mahendra Rai 2017-10-03 There has been emergence of multidrug resistance problem all over the world due to overuse or underuse of antibiotics. Most microbes including bacteria, fungi, protozoans and others have developed resistance to antibiotics, and therefore, this problem is now recognized to be of global concern. Ubiquitous occurrence of multidrug-resistant bacteria decreases effectiveness of current treatment, which results in thousands of deaths all over the world. Hence, investigations for new alternatives and novel strategies are urgently needed to address the problem of multidrug resistance. The antimicrobial potential of essential oils and metallic nanoparticles represent an effective solution for microbial resistance. Moreover, the use of essential oils in combination with metallic nanoparticles may exert synergistic antimicrobial effects and would be a novel approach. Essential oils (EOs) are volatile, natural, aromatic oily liquids that can be obtained from several parts of plants especially the aerial ones such as leaves and flowers. They are derived from complex metabolic pathways in order to protect plants from diverse pathogenic microorganisms. In fact, the bioactivity of EOs have been confirmed by several studies which have demonstrated their antibacterial, antiviral, anti-inflammatory,
antifungal, antimitaginic, anticarcinogenic, and antioxidant properties. Nanotechnology is one of the most important and emerging technologies, which has brought about a technological revolution in the world. It has enormous applications in the field of medicine. Nanoparticles are very important tools in curing different diseases in general and microbial diseases in particular due to their significantly novel and improved chemical, physical and biological properties and high surface area-to-volume ratio. Among these, metal nanoparticles are known to play pivotal role in various biomedical applications. In this context, nanoparticles such as silver have shown their potential and could emerge as the new generation of antimicrobials. Silver nanoparticles have broad-spectrum biological activities and hence are used in many biomedical applications. The various biomedical applications of silver nanoparticles include treatment of wounds, burns, in water-disinfecting systems, in nanobased bone implantations, in dentistry for the development of dental materials and as antibacterial, antivirals, anti-protozoals, anti-arthropods and anticancerous agents. Apart from silver, noble metal nanoparticles like gold and platinum and other nanoparticles copper, oxides of different metals, etc. have been also the materials of choice for many scientists for their biological applications. The book will be of interest to chemists, microbiologists, biotechnologist, food technologists, nanotechnologists, pharmacologists, clinicians and those interested in nature cure. Students will find this book useful and reader friendly.

The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus—Shymaa Enany 2017-03-08 Staphylococcus aureus S. aureus is a growing issue both within hospitals and community because of its virulence determinants and the continuing emergence of new strains resistant to antimicrobiotics. In this book, we present the state of the art of S. aureus virulence mechanisms and antibiotic-resistance profiles, providing an unprecedented and
comprehensive collection of up-to-date research about the evolution, dissemination, and mechanisms of different staphylococcal antimicrobial resistance patterns alongside bacterial virulence determinants and their impact in the medical field. We include several review chapters to allow readers to better understand the mechanisms of methicillin resistance, glycopeptide resistance, and horizontal gene transfer and the effects of alterations in S. aureus membranes and cell walls on drug resistance. In addition, we include chapters dedicated to unveiling S. aureus pathogenicity with the most current research available on S. aureus exfoliative toxins, enterotoxins, surface proteins, biofilm, and defensive responses of S. aureus to antibiotic treatment.

Chemical and Physical Determinants of Bacterial Biofilm Development - Arunima Bhattacharjee 2017 Bacterial biofilms cause persistent and deadly infections in medical settings, which are resistant to conventional antibiotic doses. Medical biofilms are often multi-species communities of bacteria which are maintained through chemical signaling and metabolite exchange. An improved understanding of the interactions between bacteria governing community behavior will facilitate the discovery of drug targets for biofilm prevention and eradication. In this thesis, I describe coculture interactions between different species of bacteria and a method to track metabolic states of bacteria in different environments. One example of such coculture interactions is illustrated in the competition for iron in an in vitro infection model. Salmonella enterica serovar Typhimurium (STm) causes acute infections in the gut, but STm infections are abolished in coculture with a probiotic bacterium, Escherichia coli Nissle (EcN). EcN outcompetes STm in the gut via a class of bactericidal compounds, called microcins, which are conjugated to iron scavenging siderophore molecules. In vitro biofilm models show that STm uses EcN
siderophores to acquire iron, and that siderophore conjugation is an anti-cheating strategy employed by EcN to outcompete STm for nutrients. In another example of novel coculture interactions, E. coli and Pseudomonas aeruginosa have competitive interactions governing biofilm establishment and dispersal. The E. coli biofilm dispersal is triggered by P. aeruginosa quorum sensing (QS) compounds. However, E. coli biofilms grown on periodic microstructures, resembling the stomach microvilli, are shown to modulate this pathway by metabolite accumulation in engineered microenvironments. Substrate structures induce changes in E. coli biofilm morphology, which in turn increase the concentration of indole, a constitutively produced metabolite within the biofilm. Moreover, the monoculture biofilms grown on microstructured substrates are significantly more susceptible to antibiotics than monocultures on flat substrates. FLIM is a label free, non-invasive technique and has immense potential for use as a means to probe interactions in microbial communities. Fluorescence lifetime imaging microscopy (FLIM), demonstrates that this increased antibiotic susceptibility is due to changes in cellular metabolism induced by an altered microenvironment. The research in this thesis demonstrates more long term and permanent strategies for biofilm infections and will provide guidelines and inspiration for improved diagnostics, and treatments for biofilm infections.

Bacteriophages and Biofilms—Stephen T. Abedon 2011 Bacteriophages (phages) are the viruses of bacteria and biofilms that represent a frequent niche for bacteria, where they are embedded in extensive extracellular polymeric substances (EPS) and can be structured into complex microcolonies. As a consequence of the resulting spatial structure and heterogeneity, phage-bacterial interactions within biofilms can be more complicated than those between phages and planktonic bacteria. This book presents and discusses research which provides a better understanding of the biology of phages.
interacting with biofilms.

Oral Biofilms - S. Eick 2020-12-21 Biofilms are highly organized polymicrobial communities that are embedded in an extracellular matrix and formed on natural and artificial surfaces. In the oral cavity, biofilms are formed not only on natural teeth, but also on restorative materials, prosthetic constructions, and dental implants. Oral diseases like caries, gingivitis, periodontitis, and also pulp inflammation are associated with biofilms. This publication is an up-to-date overview on oral biofilms from different clinically relevant perspectives. Experts comprising basic researchers and clinicians report on recent research relating to biofilms - from general summaries to recommendations for daily clinical work. This book covers all aspects of oral biofilms, including models used in the laboratory, biofilms in dental water unit lines, periodontal and peri-implant biofilms, caries-related biofilms, halitosis, endodontic biofilms, and Candida infections, as well as biofilms on dental materials and on orthodontic appliances. Several chapters deal with anti-biofilm therapy, from the efficacy of mechanical methods and the use of antimicrobials, to alternative concepts. This publication is particularly recommended to dental medicine students, practitioners, other oral healthcare professionals, and scientists with an interest in translational research on biofilms.

Biological effects of power frequency electric and magnetic fields

Lipids and Essential Oils as Antimicrobial Agents - Halldor Thormar 2010-12-28 Lipids and essential oils have strong antimicrobial properties — they kill or inhibit the growth of microbes such as bacteria, fungi, or viruses. They are being studied for use in the prevention and treatment of infections, as potential disinfectants, and for their preservative and antimicrobial properties when formulated as pharmaceuticals, in food products, and in
cosmetics. Lipids and Essential Oils as Antimicrobial Agents is a comprehensive review of the scientific knowledge in this field. International experts provide summaries on: the chemical and biological properties of lipids and essential oils use of lipids and essential oils in pharmaceuticals, cosmetics and health foods antimicrobial effects of lipids in vivo and in vitro antimicrobial lipids in milk antimicrobial lipids of the skin antibacterial lipids as sanitizers and disinfectants antibacterial, antifungal, and antiviral activities of essential oils antimicrobial lipids in milk antimicrobial lipids of the skin antibacterial lipids as sanitizers and disinfectants antibacterial, antifungal, and antiviral activities of essential oils Lipids and Essential Oils as Antimicrobial Agents is an essential guide to this important topic for researchers and advanced students in academia and research working in pharmaceutical, cosmetic and food sciences, biochemistry and natural products chemistry, microbiology; and for health care scientists and professionals working in the fields of public health and infectious diseases. It will also be of interest to anyone concerned about health issues and particularly to those who are conscious of the benefits of health food and natural products.

Antibiofilm Agents-Kendra P. Rumbaugh 2014-05-08 This book provides a survey of recent advances in the development of antibiofilm agents for clinical and environmental applications. The fact that microbes exist in structured communities called biofilms has slowly become accepted within the medical community. We now know that over 80% of all infectious diseases are biofilm-related; however, significant challenges still lie in our ability to diagnose and treat these extremely recalcitrant infections. Written by experts from around the globe, this book offers a valuable resource for medical professionals seeking to treat biofilm-related disease, academic and industry researchers interested in drug discovery and instructors who teach courses on microbial pathogenesis and medical microbiology.
Nanostructured Coatings for Controlling Bacterial Biofilms and Antibiotic Resistance -
Kristina Dimitrova Ivanova 2017 The accelerated emergence of drug resistant bacteria is one of the most serious problems in healthcare and the difficulties in finding new antibiotics make it even more challenging. To overcome the action of antibiotics bacteria develop effective resistance mechanisms including the formation of biofilms. Biofilms are bacterial communities of cells embedded in a self-produced polymeric matrix commonly found on medical devices such as indwelling catheters. When pathogens adopt this mode of growth on the surface, they effectively circumvent host immune defences and antibiotic therapy, causing severe and life threatening infections. This thesis focuses on the development of advanced nanoscale materials and coatings for controlling bacterial biofilms and the emergence of drug resistance. To this end, acylase and amylase enzymes degrading essential for the biofilm growth components, were innovatively combined into hybrid nanocoatings to impart antibiofilm functionalities onto indwelling medical devices. Alternatively, ultrasound-assisted nanotransformation of antimicrobials was used as a tool for enhancing their antibacterial efficacy and overcoming the intrinsic drug resistant mechanisms in Gram-negative bacteria. These strategies offer new perspectives for prevention and treatment of biofilm infections, limiting the selection and spread of antibiotic resistance. The first part of the thesis describes the building of enzyme multilayer coatings able to interfere with bacterial quorum sensing (QS) and prevent biofilm establishment on silicone urinary catheters. This was achieved by alternate deposition of negatively charged acylase and oppositely charged polyethylenimine in a Layer-by-Layer (LbL) fashion. The acylase-coated catheters degraded bacterial signalling molecules and inhibited the QS process of Gram-negative bacteria. These coatings also significantly reduced the biofilm growth on urinary catheters under conditions mimicking the real situation in catheterised patients, without
affecting the human cells viability. Acylase was further combined with the matrix degrading amylase enzyme into hybrid multilayer coatings able to interfere simultaneously with bacterial QS signals and biofilm integrity. The LbL assembly of both enzymes into hybrid nanocoatings resulted in stronger biofilm inhibition as a function of acylase or amylase location in the multi-layer coating. Hybrid nanocoatings with the QS inhibiting acylase as outermost layer reduced the occurrence of single and multi-species biofilms on silicone catheters in vitro and in an in vivo animal model. The thesis also reports on the efficacy of nanomaterials for prevention and eradication of antibiotic resistant biofilms. Multilayer assemblies that contain in their structure and release on demand antibacterial polycationic nanospheres (NSs) were engineered on silicone surfaces. A polycationic aminocellulose (AC) conjugate was first transformed into NSs with enhanced bactericidal activity and then combined with hyaluronic acid to build bacteria-responsive layers on silicone material. When challenged with bacteria these multilayers disassembled gradually inhibiting both planktonic and biofilm modes of bacterial growth. The same AC NSs were also covalently immobilised on silicone material using epoxy-amine conjugation chemistry. The intact NSs on the silicone material were able to inhibit bacterial biofilm growth, suggesting the potential of epoxy-amine curing reaction for generation of stable non-leaching coatings on silicone-based medical devices. Finally, ultrasound-assisted nanotransformation of penicillin G was used as a strategy to boost its activity towards bacteria. The efficient penetration of the NSs within a biomimetic membranes sustained the theory that they may reach the periplasmic space in Gram-negative bacteria and exert their bactericidal activity "unrecognised" as a threat by bacteria for selection of resistance.

Bacterial Pathogenesis and Antibacterial Control-Sahra Kırmusaoğlu 2018-05-30 Bacterial pathogens have been becoming the main
problem in hospital and community-acquired infections. It is hard to treat the strains that are resistant to antibiotics, due to the causing recurrent and untreatable infections. In recent years, the combination treatments and the novel technologies have been preferred to overcome the emergence of antibacterial resistance of pathogens. In this book, examples of pathogenesis by clinical cases, control by antibiotics and bioactive antimicrobials, control by novel technologies with the collection of up-to-date researches and reviews are presented. This book can be useful for researchers interested in antibacterials, bioactive compounds, and novel technologies.

Molecular Biology and Pathogenicity of Mycoplasmas—Shmuel Razin 2007-05-08 was the result of the efforts of Robert Cleverdon. The rapidly developing discipline of molecular biology and the rapidly expanding knowledge of the PPLO were brought together at this meeting. In addition to the PPLO specialists, the conference invited Julius Marmur to compare PPLO DNA to DNA of other organisms; David Garfinkel, who was one of the first to develop computer models of metabolism; Cyrus Levinthal to talk about coding; and Henry Quastler to discuss information theory constraints on very small cells. The conference was an announcement of the role of PPLO in the fundamental understanding of molecular biology. Looking back 40-some years to the Connecticut meeting, it was a rather bold enterprise. The meeting was international and inter-disciplinary and began a series of important collaborations with influences resonating down to the present. If I may be allowed a personal remark, it was where I first met Shmuel Razin, who has been a leading figure in the emerging mycoplasma research and a good friend. This present volume is in some ways the fulfillment of the promise of that early meeting. It is an example of the collaborative work of scientists in building an understanding of fundamental aspects of biology.
Nitric Oxide—Louis J. Ignarro 2000-09-13 Nitric oxide (NO) is a gas that transmits signals in an organism. Signal transmission by a gas that is produced by one cell and which penetrates through membranes and regulates the function of another cell represents an entirely new principle for signaling in biological systems. NO is a signal molecule of key importance for the cardiovascular system acting as a regulator of blood pressure and as a gatekeeper of blood flow to different organs. NO also exerts a series of other functions, such as acting a signal molecule in the nervous system and as a weapon against infections. NO is present in most living creatures and made by many different types of cells. NO research has led to new treatments for treating heart as well as lung diseases, shock, and impotence. Scientists are currently testing whether NO can be used to stop the growth of cancerous tumors, since the gas can induce programmed cell death, apoptosis. This book is the first comprehensive text on nitric oxide to cover all aspects—basic biology, chemistry, pathobiology, effects on various disease states, and therapeutic implications. Edited by Nobel Laureate Louis J. Ignarro, editor of the Academic Press journal, Nitric Oxide Authored by world experts on nitric oxide Includes an overview of basic principles of biology and chemical biology Covers principles of pathobiology, including the nervous system, cardiovascular function, pulmonary function, and immune defense

Biofilms in the Dairy Industry—Koon Hoong Teh 2015-08-31 In recent years, the formation and impacts of biofilms on dairy manufacturing have been studied extensively, from the effects of microbial enzymes produced during transportation of raw milk to the mechanisms of biofilm formation by thermophilic spore-forming bacteria. The dairy industry now has a better understanding of biofilms and of approaches that may be adopted to reduce the impacts that biofilms have on manufacturing efficiencies and the quality of dairy products. Biofilms in the Dairy Industry provides a comprehensive overview of biofilm-related issues facing the
dairy sector. The book is a cornerstone for a better understanding of the current science and of ways to reduce the occurrence of biofilms associated with dairy manufacturing. The introductory section covers the definition and basic concepts of biofilm formation and development, and provides an overview of problems caused by the occurrence of biofilms along the dairy manufacturing chain. The second section of the book focuses on specific biofilm-related issues, including the quality of raw milk influenced by biofilms, biofilm formation by thermoduric streptococci and thermophilic spore-forming bacteria in dairy manufacturing plants, the presence of pathogens in biofilms, and biofilms associated with dairy waste effluent. The final section of the book looks at the application of modelling approaches to control biofilms. Potential solutions for reducing contamination throughout the dairy manufacturing chain are also presented. Essential to professionals in the global dairy sector, Biofilms in the Dairy Industry will be of great interest to anyone in the food and beverage, academic and government sectors.

This text is specifically targeted at dairy professionals who aim to improve the quality and consistency of dairy products and improve the efficiency of dairy product manufacture through optimizing the use of dairy manufacturing plant and reducing operating costs.

Essential Oils-Hany El-Shemy 2020-01-08

Essential oils were used globally as a folk medicine for the treatment of a number of diseases because of the high content of natural compounds. Therefore, this book looks at research topics dealing with isolation, purification, and identification of active ingredients of essential oils from plants. This knowledge will provide significant information about essential oils to researchers and others interested in the field.

Prosthetic Joint Infections-Trisha Peel 2017-11-28

This book outlines the most updated clinical guidelines that are vital for the
prevention infections and care of patients with joint infections following a replacement surgery, one of the highest volume medical interventions globally. Sections address the diagnosis, management approaches and prevention of prosthetic joint infections. Written by experts in the field, this text provides a brief overview of the literature and current recommendations in each of the specified areas. Given the rapidly evolving state-of-play in this clinical area, this compendium grows increasingly important to clinicians in their management decisions. Prosthetic Joint Infections is a valuable resource for infectious disease specialists, epidemiologists, surgeons, and orthopedic specialists who may work with patients with prosthetic joint infections.

Antimicrobial Peptides-Katsumi Matsuzaki
2019-04-12 This book presents an overview of antimicrobial peptides (AMPs), their mechanisms of antimicrobial action, other activities, and various problems that must still be overcome regarding their clinical application. Divided into four major parts, the book begins with a general overview of AMPs (Part I), and subsequently discusses the various mechanisms of antimicrobial action and methods for researching them (Part 2). It then addresses a range of activities other than antimicrobial action, such as cell penetration, antisepsis, anticancer, and immunomodulatory activities (Part 3), and explores the prospects of clinical application from various standpoints such as the selective toxicity, design, and discovery of AMPs (Part 4). A huge number of AMPs have been discovered in plants, insects, and vertebrates including humans, and constitute host defense systems against invading pathogenic microorganisms. Consequently, many attempts have been made to utilize AMPs as antibiotics. AMPs could help to solve the urgent problem of drug-resistant bacteria, and are also promising with regard to sepsis and cancer therapy. Gathering a wealth of information, this book will be a bible for all those seeking to develop antibiotics, anti-sepsis, or anticancer agents based on AMPs.
Microbial Biofilms in Healthcare: Formation, Prevention and Treatment - Karen Vickery
2020
Biofilms are ubiquitous and their presence in industry can lead to production losses. However, nowhere do biofilms impact human health and welfare as much as those that are found contaminating the healthcare environment, surgical instruments, equipment, and medical implantable devices. Approximately 70% of healthcare-associated infections are due to biofilm formation, resulting in increased patient morbidity and mortality. Biofilms formed on medical implants are recalcitrant to antibiotic treatment, which leaves implant removal as the principal treatment option. In this book, we investigate the role of biofilms in breast and dental implant disease and cancer. We include in vitro models for investigating treatment of chronic wounds and disinfectant action against Candida sp. Also included are papers on the most recent strategies for treating biofilm infection ranging from antibiotics incorporated into bone void fillers to antimicrobial peptides and quorum sensing.

Antibacterial Agents - Ranjith Kumavath
2017-05-31
New drugs are frequently entering into the market along with the existing drugs. The antibacterial agents can be discussed in five major classes, i.e. classification based on the type of action, source, spectrum of activity, chemical structure and function. Resistance of bacteria to antibiotics is an urgent problem of the humanity, which leads us to the lack of therapy for serious bacterial infections. Development of new antibiotics has almost ceased in the last decades - even when a new antibiotic is launched, very soon the resistance of bacteria appears. Industrial textiles exposed as awnings, screens, tents; upholstery used in large public areas such as hospitals, hotels and stations; fabrics for transports; protective clothing and personal protective equipment; bed sheets and blankets; textiles left wet between processing steps; intimate apparel, underwear, socks and
sportswear, disinfection of air and water for
white rooms, hospitals and operating theatres,
food and pharma industries, water depuration,
drinkable water supplying and air conditioning
systems. Many clinicians recommend alternative
approaches to using antimicrobial substances.
Moreover, the majority of bioagents demonstrate
on antibiotics for treatment of a wide range of
diseases in human sectors. However, the misuse
and mishandling of drugs lead to microbial,
particularly bacterial, resistance as well as result
in the difficulty of treating microbial diseases.
Hence, the proposed book will give more precise
information on novel antibacterial compound(s).

Impact of Cell Substratum Adhesion Pattern
and Cluster Spatial Distribution on the
Development of Staphylococcus Aureus
Biofilm Under Physiologically-relevant Shear
Rates - Opeyemi O Ajayi 2018 Bacterial cells, in
nature, prefer to exist as a surface-attached
coalescent community of slime-encased cells
known as biofilms. This biofilm-forming existence
offers several advantages to the cells, including
evasion of host immune response, resistance to
antimicrobials and antibiotics, communal
expression of metabolites, and overall increased
survivability in unfavorable environmental
conditions. Biofilm formation has been observed
for several species of bacteria across multiple
scientific disciplines and affecting a wide variety
of industries including the food industry, waste
treatment, and healthcare. In healthcare
settings, S. aureus is a major etiological agent of
biofilm-based infections in humans. Furthermore,
the hydrodynamic environment of the
cardiovascular system complicates the
eradication of biofilm-based infection due to
metastasis of eroded cells to multiple infection
sites. Therefore, remediation efforts of
staphylococcal infections are aimed at the
prevention and disruption of biofilm
development.

Antimicrobials, Antibiotic Resistance,
Antibiofilm Strategies and Activity Methods-
To prevent bacterial adherence, invasion and infection, antimicrobials such as antibiotics are being used and vastly researched nowadays. Several factors such as natural selection, mutations in genes, the presence of efflux pumps, impermeability of the cell wall, structural changes in enzymes and receptors, biofilm formation, and quorum sensing cause microorganisms to develop resistance against antimicrobials. Isolates that synthesize extended spectrum-β-lactamases (ESBL), induced β-lactamases (IBL), carbapenamases, metallo-β-lactamases (MBLs), and New Delhi metallo-β-lactamases (NDM) have emerged. Determining virulence factors such as biofilms and the level of antimicrobial activities of antimicrobial agents alone and in combination with appropriate doses against microorganisms is very important for the diagnosis, inhibition, and prevention of microbial infection. The goal of this book is to provide information on all these topics.

Periodontitis - A Useful Reference is a comprehensive book compiled by a team of experts with the objective of providing an overview of the basic pathology of "periodontitis" and its implication on oral health and general systemic health. Periodontitis has become a global health burden in recent days. It is noteworthy that oral health is being considered as the mirror of general health and the study of oral-systemic health connections has advanced among scientists, clinicians, and the public as well. We wish the array of chapters that highlights the importance and impact of periodontal health could be a useful guide for the community of public, students, and clinicians.

The Second Messenger Cyclic Di-GMP - Alan J. Wolfe 2010-01-05 A comprehensive reference on the state of the science for both experienced researchers and for those who are interested in discovering its many promising applications. Examines c-di-GMP signaling from a variety of angles, beginning with an introductory chapter.
that compares c-di-GMP to the better-known second messenger cAMP. • Recounts the discovery of c-di-GMP, explains the important role of bioinformatics in the development and continued evolution of the field, and describes the fundamental structure, function, regulation, and integration of c-di-GMP pathways. • Explores the role of c-di-GMP in such diverse processes as flagellar biogenesis and motility, extracellular polysaccharide biosynthesis, biofilm development, virulence, and innate host immunity.