Bistatic Radar: Bistatic SAR Isar Fsr Theory Algorithms and Program Implementation

This is a featured live stream. For more information about this book, its authors or other books, please visit the publisher's website.

Bistatic Radar: Bistatic SAR Isar Fsr Theory Algorithms and Program Implementation

This book is a comprehensive guide to bistatic SAR (Synthetic Aperture Radar) theory, algorithms, and program implementation. It covers the fundamentals of bistatic SAR, including the principles of bistatic radar, bistatic SAR imaging, and the processing techniques used in bistatic SAR. The book is divided into several sections, each covering a different aspect of bistatic SAR.

Chapter 1: Introduction

This chapter provides an overview of bistatic SAR, including the history of bistatic radar, the advantages and disadvantages of bistatic SAR compared to traditional (mono-static) SAR, and the applications of bistatic SAR in various fields such as defense, security, and environmental monitoring.

Chapter 2: Bistatic Radar Fundamentals

This chapter covers the basics of bistatic radar, including the bistatic radar equation, bistatic radar cross-section, and the bistatic radar imaging model. It also discusses the impact of bistatic radar geometry on the radar performance.

Chapter 3: Bistatic SAR Imaging

This chapter focuses on the principles of bistatic SAR imaging, including the bistatic SAR imaging equation, the imaging geometry, and the imaging patterns. It also covers the basics of bistatic SAR image formation, including range Doppler processing, chirp scaling, and frequency domain processing.

Chapter 4: Bistatic SAR Signal Processing

This chapter covers the signal processing techniques used in bistatic SAR, including the bistatic SAR signal model, the bistatic SAR signal processing algorithms, and the implementation of bistatic SAR signal processing. It also discusses the impact of signal processing on the radar performance.

Chapter 5: Bistatic SAR Data Processing

This chapter covers the data processing techniques used in bistatic SAR, including the bistatic SAR data model, the bistatic SAR data processing algorithms, and the implementation of bistatic SAR data processing. It also discusses the impact of data processing on the radar performance.

Chapter 6: Bistatic SAR Applications

This chapter covers the applications of bistatic SAR, including the bistatic SAR applications in defense, security, and environmental monitoring. It also discusses the impact of bistatic SAR on various applications.

Appendices

This section includes additional material related to bistatic SAR, such as the bistatic SAR equations, the bistatic SAR imaging model, and the bistatic SAR signal processing algorithms. It also includes a list of references and a glossary of bistatic SAR terms.

This book is an essential resource for researchers, engineers, and students interested in bistatic SAR. It is also a valuable resource for practitioners in the field of bistatic SAR.


The Micro-Doppler Effect in Radar, Second Edition: Y. C. Chen 2008-08-28 The micro-Doppler effect is a prominent feature of the signal that is a superposition of many short-range Doppler effect signals composed by basic micro-Doppler effect signals in the radar. The book presents detailed procedures, including mathematical expressions and signal processing algorithms for the analysis and interpretation of the micro-Doppler effect. It covers the basic principles of the micro-Doppler effect, its significance in radar systems, and its applications in various fields.

The Micro-Doppler Effect in Radar, Second Edition: Y. C. Chen 2008-08-28 The micro-Doppler effect is a prominent feature of the signal that is a superposition of many short-range Doppler effect signals composed by basic micro-Doppler effect signals in the radar. The book presents detailed procedures, including mathematical expressions and signal processing algorithms for the analysis and interpretation of the micro-Doppler effect. It covers the basic principles of the micro-Doppler effect, its significance in radar systems, and its applications in various fields.

NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY (Rami) Isak 2001-04-13 The NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY project was initiated in 2001 and was sponsored by the European Commission. The project aimed to develop MEMS (Micro-Electro-Mechanical Systems) instruments that could be used in technical geological applications, such as the investigation of natural disasters and the monitoring of geological structures.

The NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY project was initiated in 2001 and was sponsored by the European Commission. The project aimed to develop MEMS (Micro-Electro-Mechanical Systems) instruments that could be used in technical geological applications, such as the investigation of natural disasters and the monitoring of geological structures.

2010 IEEE Radar Conference IEEE 2010

The Micro-Doppler Effect in Radar, Second Edition: Y. C. Chen 2008-08-28 The micro-Doppler effect is a prominent feature of the signal that is a superposition of many short-range Doppler effect signals composed by basic micro-Doppler effect signals in the radar. The book presents detailed procedures, including mathematical expressions and signal processing algorithms for the analysis and interpretation of the micro-Doppler effect. It covers the basic principles of the micro-Doppler effect, its significance in radar systems, and its applications in various fields.

The Micro-Doppler Effect in Radar, Second Edition: Y. C. Chen 2008-08-28 The micro-Doppler effect is a prominent feature of the signal that is a superposition of many short-range Doppler effect signals composed by basic micro-Doppler effect signals in the radar. The book presents detailed procedures, including mathematical expressions and signal processing algorithms for the analysis and interpretation of the micro-Doppler effect. It covers the basic principles of the micro-Doppler effect, its significance in radar systems, and its applications in various fields.

The NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY project was initiated in 2001 and was sponsored by the European Commission. The project aimed to develop MEMS (Micro-Electro-Mechanical Systems) instruments that could be used in technical geological applications, such as the investigation of natural disasters and the monitoring of geological structures.

The NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY project was initiated in 2001 and was sponsored by the European Commission. The project aimed to develop MEMS (Micro-Electro-Mechanical Systems) instruments that could be used in technical geological applications, such as the investigation of natural disasters and the monitoring of geological structures.

2010 IEEE Radar Conference IEEE 2010

The Micro-Doppler Effect in Radar, Second Edition: Y. C. Chen 2008-08-28 The micro-Doppler effect is a prominent feature of the signal that is a superposition of many short-range Doppler effect signals composed by basic micro-Doppler effect signals in the radar. The book presents detailed procedures, including mathematical expressions and signal processing algorithms for the analysis and interpretation of the micro-Doppler effect. It covers the basic principles of the micro-Doppler effect, its significance in radar systems, and its applications in various fields.

The Micro-Doppler Effect in Radar, Second Edition: Y. C. Chen 2008-08-28 The micro-Doppler effect is a prominent feature of the signal that is a superposition of many short-range Doppler effect signals composed by basic micro-Doppler effect signals in the radar. The book presents detailed procedures, including mathematical expressions and signal processing algorithms for the analysis and interpretation of the micro-Doppler effect. It covers the basic principles of the micro-Doppler effect, its significance in radar systems, and its applications in various fields.

The NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY project was initiated in 2001 and was sponsored by the European Commission. The project aimed to develop MEMS (Micro-Electro-Mechanical Systems) instruments that could be used in technical geological applications, such as the investigation of natural disasters and the monitoring of geological structures.

The NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY project was initiated in 2001 and was sponsored by the European Commission. The project aimed to develop MEMS (Micro-Electro-Mechanical Systems) instruments that could be used in technical geological applications, such as the investigation of natural disasters and the monitoring of geological structures.

2010 IEEE Radar Conference IEEE 2010

The Micro-Doppler Effect in Radar, Second Edition: Y. C. Chen 2008-08-28 The micro-Doppler effect is a prominent feature of the signal that is a superposition of many short-range Doppler effect signals composed by basic micro-Doppler effect signals in the radar. The book presents detailed procedures, including mathematical expressions and signal processing algorithms for the analysis and interpretation of the micro-Doppler effect. It covers the basic principles of the micro-Doppler effect, its significance in radar systems, and its applications in various fields.

The Micro-Doppler Effect in Radar, Second Edition: Y. C. Chen 2008-08-28 The micro-Doppler effect is a prominent feature of the signal that is a superposition of many short-range Doppler effect signals composed by basic micro-Doppler effect signals in the radar. The book presents detailed procedures, including mathematical expressions and signal processing algorithms for the analysis and interpretation of the micro-Doppler effect. It covers the basic principles of the micro-Doppler effect, its significance in radar systems, and its applications in various fields.

The NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY project was initiated in 2001 and was sponsored by the European Commission. The project aimed to develop MEMS (Micro-Electro-Mechanical Systems) instruments that could be used in technical geological applications, such as the investigation of natural disasters and the monitoring of geological structures.

The NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY project was initiated in 2001 and was sponsored by the European Commission. The project aimed to develop MEMS (Micro-Electro-Mechanical Systems) instruments that could be used in technical geological applications, such as the investigation of natural disasters and the monitoring of geological structures.

2010 IEEE Radar Conference IEEE 2010

The Micro-Doppler Effect in Radar, Second Edition: Y. C. Chen 2008-08-28 The micro-Doppler effect is a prominent feature of the signal that is a superposition of many short-range Doppler effect signals composed by basic micro-Doppler effect signals in the radar. The book presents detailed procedures, including mathematical expressions and signal processing algorithms for the analysis and interpretation of the micro-Doppler effect. It covers the basic principles of the micro-Doppler effect, its significance in radar systems, and its applications in various fields.

The Micro-Doppler Effect in Radar, Second Edition: Y. C. Chen 2008-08-28 The micro-Doppler effect is a prominent feature of the signal that is a superposition of many short-range Doppler effect signals composed by basic micro-Doppler effect signals in the radar. The book presents detailed procedures, including mathematical expressions and signal processing algorithms for the analysis and interpretation of the micro-Doppler effect. It covers the basic principles of the micro-Doppler effect, its significance in radar systems, and its applications in various fields.

The NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY project was initiated in 2001 and was sponsored by the European Commission. The project aimed to develop MEMS (Micro-Electro-Mechanical Systems) instruments that could be used in technical geological applications, such as the investigation of natural disasters and the monitoring of geological structures.

The NEMO: MEMS INVESTIGATION INSTRUMENTS FOR TECHNICAL GEOLOGY project was initiated in 2001 and was sponsored by the European Commission. The project aimed to develop MEMS (Micro-Electro-Mechanical Systems) instruments that could be used in technical geological applications, such as the investigation of natural disasters and the monitoring of geological structures.
Politics and the European Commission provides a framework for generating new information about, and interpretations of, the power struggles at the heart of the EU.

Handmade Furniture
Rafael Nathan 2014 For a woodworker, there's nothing more satisfying than building a project that adds beauty and function to a busy home: the stunning cutting board used every night in the kitchen, the elegant and helpful end-table next to the bed, or the handsome coffee table that handsomely serves as the living room's centerpiece. Ultimately, it's the handmade pieces of furniture that become the family heirlooms for generations to come. With Handmade Furniture by Rafael Nathan, a professional cabinetmaker and the former co-publisher of Australian Wood Review, woodworkers of all skill levels will discover 21 beautiful projects that will be a welcome and proud addition in any room in the house. Ranging in difficulty from simple construction projects requiring basic tools to the more challenging builds that call for a variety of hand and power tools, the projects in this book include: cutting boards, coffee tables, end tables, magazine racks, and more! Whether you are a new or old woodworker, this book is guaranteed to successfully build handmade furniture that will last a lifetime.

Arms & Explosives - 1901